
Using the QVT-R analyser and code generator

K. Lano

July 19, 2020

1 Introduction

The Agile UML toolset (https://projects.eclipse.org/projects/modeling.agileuml)
provides a QVT-R parser and analyser, which converts QVT-R specifications
into the UML-RSDS subset of UML. The Agile UML tools can then be used
to generate executable implementations of the specifications in Java or other
3GLs.

This facility enables bidirectional (bx) transformation specification, and al-
ternative transformation semantics to be adopted.

The latest version of the tools can be obtained from the github repository
https://github.com/eclipse/agileuml/.

2 Analysis of QVT-R

Transformations in QVT-R consist of a set of named rules, or relations, for
example:

transformation tau(source: MM1, target: MM2)

{

top relation FamilyMember2Male

{ checkonly domain source fm : FamilyMember

{ membername = n };

enforce domain target m : Male

{ name = fm.memberOf.familyname + ", " + n };

when

{ fm.memberOf.father->includes(fm) or

fm.memberOf.sons->includes(fm)

}

}

}

Transformations are written to operate over source and target metamodels, in
this case simplified metamodels of the Families to Persons case (Figure 1).

1

Figure 1: Simple Families to Persons metamodels

The metamodels should be loaded into the Agile UML tools first, eg., a text
metamodel file output/mm.txt is loaded via the File menu option Recent. Then
the QVT-R file output/mm.qvt is loaded with the File option Load transforma-
tion → Load QVT-R.

Syntax and type-checking is performed, with warning messages in the case
of invalid syntax and undefined identifiers. Metrics calculation of the measures
of [2] is also performed, and results are written to output/qvtmeasures.

The following consistency checks are made:

• If rule S is tested in the when clause of rule R, then S precedes R in the
specification;

• If non-top rule S is called in R’s where clause (directly or via another
rule), and top relation P occurs in S ’s when clause, then P precedes R.

• If S is called in R’s where clause, and in P ’s when clause, then R precedes
P .

A UML-RSDS specification expressing the semantics of the QVT-R specifi-
cation is also produced. This consists of three subtransformations, Pres, Con,
Cleanup. For example:

**** UML-RSDS of QVT-R is:

Use Case, name: tau$Pres

FamilyMember2Male$trace@pre::

not(fm : FamilyMember & fm.memberOf.father->includes(fm)) &

not(fm : FamilyMember & fm.memberOf.sons->includes(fm)) =>

self->isDeleted()

FamilyMember2Male$trace::

2

n = fm.membername & fm.memberOf.father->includes(fm) =>

m.name = fm.memberOf.familyname + ", " + n

FamilyMember2Male$trace::

n = fm.membername & fm.memberOf.sons->includes(fm) =>

m.name = fm.memberOf.familyname + ", " + n

Use Case, name: tau$Con

::

fm : FamilyMember & n = fm.membername & fm.memberOf.father->includes(fm) &

not(fm.traces$FamilyMember2Male$fm@pre->exists(tr$1 | true)) =>

Male->exists(m | m.name = fm.memberOf.familyname + ", " + n &

FamilyMember2Male$trace->exists(tr$0 | tr$0.fm = fm & tr$0.m = m))

::

fm : FamilyMember & n = fm.membername & fm.memberOf.sons->includes(fm) &

not(fm.traces$FamilyMember2Male$fm@pre->exists(tr$1 | true)) =>

Male->exists(m | m.name = fm.memberOf.familyname + ", " + n &

FamilyMember2Male$trace->exists(tr$0 | tr$0.fm = fm & tr$0.m = m))

Use Case, name: tau$Cleanup

Male::

traces$FamilyMember2Male$m@pre->isEmpty() =>

self->isDeleted()

The Pres constraints concern incremental execution, ie., re-application of tau to
a modified source model. The first constraint removes a pair (fm,m) of family
member fm and male m from a trace if fm no longer satisfies the conditions to
be mapped to m. The second and third propagate name changes from fm and
fm’s family to m’s name.

The Con constraints apply to initially map a families model to a persons
model, and to propagate the introduction of new source elements to new target
elements. The antecedent of these constraints includes a check that fm is not
already mapped to some m.

Finally, the Cleanup constraints remove target elements that are not related
to some source element.

Inspection of the generated UML-RSDS specification can identify if the
QVT-R transformation has the intended semantics. The first Pres constraint
removes traces whose fm element no longer satisfies the application condi-
tion of the rule. The second and third Pres constraints update m.name if
fm.memberOf .familyname or fm.membername have changed, and the trace link-
ing m and fm is still valid. The Con constraints create Male instances m for ap-
plicable FamilyMember instances fm, and create a trace linking these instances.

3

Cleanup removes Male instances which are not linked to any FamilyMember .
If we rewrite the specification to put the when condition into the first domain

condition:

transformation tau(source: MM1, target: MM2)

{

top relation FamilyMember2Male

{ checkonly domain source fm : FamilyMember

{ membername = n }

{ fm.memberOf.father->includes(fm) or

fm.memberOf.sons->includes(fm)

};

enforce domain target m : Male

{ name = fm.memberOf.familyname + ", " + n };

}

}

Then the generated UML-RSDS is almost identical to the previous version, and
it can be seen that the semantics of the two versions are the same.

Likewise, if the effect of the relation is moved to the where clause:

transformation tau(source: MM1, target: MM2)

{

top relation FamilyMember2Male

{ checkonly domain source fm : FamilyMember { }

{ fm.memberOf.father->includes(fm) or

fm.memberOf.sons->includes(fm)

};

enforce domain target m : Male { };

where

{ m.name = fm.memberOf.familyname + ", " + fm.membername };

}

}

The produced semantics for this version can also be seen to be unchanged.
Finally, we can introduce assignments for the persons to families direction:

transformation tau(source: MM1, target: MM2)

{

top relation FamilyMember2Male

{ checkonly domain source fm : FamilyMember { }

{ fm.memberOf.father->includes(fm) or

fm.memberOf.sons->includes(fm)

};

enforce domain target m : Male { };

where

{ m.name = fm.memberOf.familyname + ", " + fm.membername and

fm.memberOf.familyname = m.name->before(", ") and

4

fm.membername = m.name->after(", ") };

}

}

In the forward direction these additional assignments are ignored, because they
are not updates to target features of target object variables (m). Thus the se-
mantics remains unchanged in this direction. In the reverse direction (swapping
the checkonly and enforce labels on the domains), we get the semantics:

**** UML-RSDS of QVT-R is:

Use Case, name: tau$Pres

Postcondition 0 is:

FamilyMember2Male$trace@pre::

not(m : Male) =>

self->isDeleted()

Postcondition 1 is:

FamilyMember2Male$trace::

true =>

(fm.memberOf.father->includes(fm) or fm.memberOf.sons->includes(fm)) &

fm.memberOf.familyname = m.name->before(", ") &

fm.membername = m.name->after(", ")

Use Case, name: tau$Con

Postcondition 0 is:

::

m : Male & not(m.traces$FamilyMember2Male$m@pre->exists(tr$1 | true)) =>

FamilyMember->exists(fm |

(fm.memberOf.father->includes(fm) or fm.memberOf.sons->includes(fm)) &

FamilyMember2Male$trace->exists(tr$0 | tr$0.fm = fm & tr$0.m = m &

fm.memberOf.familyname = m.name->before(", ") &

fm.membername = m.name->after(", ")))

Use Case, name: tau$Cleanup

Postcondition 0 is:

FamilyMember::

traces$FamilyMember2Male$fm@pre->isEmpty() =>

self->isDeleted()

5

This version will propagate name changes from the persons model to the fam-
ilies model – provided that new families are not required. Eg., if we change
a Male person’s name from “Smith, Jack” to “Smith, Peter”, the respective
FamilyMember instance will have its membername changed to “Peter”.

However, for fully bidirectional execution (bx), the transformation must in-
stead be written using only domain conditions:

transformation tau(source: MM1, target: MM2)

{

top relation FamilyMember2Male

{ checkonly domain source f : Family {}

{ f.familyname = m.name@pre->before(", ")} ;

checkonly domain source fm : FamilyMember { }

{ fm.membername = m.name@pre->after(", ") and

(f.father->includes(fm) xor

f.sons->includes(fm))

};

enforce domain target m : Male { }

{ m.name = f.familyname@pre + ", " + fm.membername@pre

};

}

}

In the reverse direction this creates a new family for each new male person, even
if a family with the same surname already exists. A similar rule is used to map
between family members in the mother or daughters roles and Female persons.
This version successfully passes test cases 1 to 8 of the benchmarx tests [1].

3 Executing QVT-R specifications

As with any UML-RSDS specification, the transformation produced from a
QVT-R specification can be implemented in Java or other 3GL by the following
steps:

• Type-check the specification, using the option Synthesis → Typecheck

• Select the Synthesis menu option Generate design to produce a design-
level description. Warnings will be issued if there are data-update conflicts
(two rules or two applications of the same rule writing to the same data).
Select y to any question about the choice of bounded-loop implementation
for a rule.

• On the Build menu, select Java4 for a basic Java implementation which
should be executable under any JVM.

• The Java code is written to the output directory in files Controller.java,
GUI.java, SystemTypes.java, etc. Compile these using javac.

6

• Execute GUI .java as

java GUI

Input files in.txt define models in text format, and are read in by the Load
model option (Figure 2).

Figure 2: UI screen of Java implementation

An example input model could be:

f : Family

f.familyname = "Smith"

m : FamilyMember

m.membername = "John"

m : f.father

m.memberOf = f

s : FamilyMember

s.membername = "Jack"

s : f.sons

s.memberOf = f

Execution of Con and Cleanup produces the model:

familyx_0 : Family

familyx_0.familyname = "Smith"

familymemberx_0 : FamilyMember

familymemberx_0.membername = "John"

familymemberx_1 : FamilyMember

familymemberx_1.membername = "Jack"

7

malex_0 : Male

malex_0.name = "Smith, John"

malex_1 : Male

malex_1.name = "Smith, Jack"

familymember2male$tracex_0 : FamilyMember2Male$trace

familymember2male$tracex_1 : FamilyMember2Male$trace

familymemberx_0 : familyx_0.father

familymemberx_1 : familyx_0.sons

familymemberx_0.memberOf = familyx_0

familymember2male$tracex_0 : familymemberx_0.traces$FamilyMember2Male$fm

familymemberx_1.memberOf = familyx_0

familymember2male$tracex_1 : familymemberx_1.traces$FamilyMember2Male$fm

familymember2male$tracex_0 : malex_0.traces$FamilyMember2Male$m

familymember2male$tracex_1 : malex_1.traces$FamilyMember2Male$m

familymember2male$tracex_0.fm = familymemberx_0

familymember2male$tracex_0.m = malex_0

familymember2male$tracex_1.fm = familymemberx_1

familymember2male$tracex_1.m = malex_1

This is in agreement with our expectations: separate male elements are pro-
duced, and a trace element for each execution of a Con rule.

With the default semantics (mandatory creation), distinct target elements
are created even if the resulting names are the same:

f : Family

f.familyname = "Smith"

m : FamilyMember

m.membername = "John"

m : f.father

m.memberOf = f

s : FamilyMember

s.membername = "John"

s : f.sons

s.memberOf = f

Execution of the transformation produces the model:

familyx_0 : Family

familyx_0.familyname = "Smith"

familymemberx_0 : FamilyMember

familymemberx_0.membername = "John"

familymemberx_1 : FamilyMember

familymemberx_1.membername = "John"

malex_0 : Male

malex_0.name = "Smith, John"

malex_1 : Male

malex_1.name = "Smith, John"

8

familymember2male$tracex_0 : FamilyMember2Male$trace

familymember2male$tracex_1 : FamilyMember2Male$trace

familymemberx_0 : familyx_0.father

familymemberx_1 : familyx_0.sons

familymemberx_0.memberOf = familyx_0

familymember2male$tracex_0 : familymemberx_0.traces$FamilyMember2Male$fm

familymemberx_1.memberOf = familyx_0

familymember2male$tracex_1 : familymemberx_1.traces$FamilyMember2Male$fm

familymember2male$tracex_0 : malex_0.traces$FamilyMember2Male$m

familymember2male$tracex_1 : malex_1.traces$FamilyMember2Male$m

familymember2male$tracex_0.fm = familymemberx_0

familymember2male$tracex_0.m = malex_0

familymember2male$tracex_1.fm = familymemberx_1

familymember2male$tracex_1.m = malex_1

Transformations can also be executed in incremental mode. If we change
the above model by setting

familymemberx_1.membername = "Jack"

and re-execute the transformation (executing Pres is sufficient), we obtain the
same model but with the updated setting

malex_1.name = "Smith, Jack"

Object moves are also supported. In this case, moving familymemberx 0 from
familyx 0.father to familyx 0.sons has no effect on the target model.

4 Extensions of QVT-R/Medini QVT

4.1 Least-change semantics

The default semantics of our tools is the same as for Medini QVT (mandatory
creation unless keys are defined for target elements; persistent traces). In cases
where keys are not used, an alternative target resolution approach, close to the
“check-before-enforce” of the standard, is available as “least change” instantia-
tion. This is written as t <:= T {P} instead of t : T {P} for target templates
t . The effect is to select t where possible to satisfy P , instead of creating a new
T instance and making P true for it. Using this operator we could rewrite the
families to persons example as:

transformation tau(source: MM1, target: MM2)

{

top relation FamilyMember2Male

{ checkonly domain source fm : FamilyMember

{ membername = n };

enforce domain target m <:= Male

{ name = fm.memberOf.familyname + ", " + n };

9

when

{ fm.memberOf.father->includes(fm) or

fm.memberOf.sons->includes(fm)

}

}

}

The semantics of this is similar to the previous version, only the definition
of Con is changed:

Use Case, name: tau$Con

::

fm : FamilyMember & n = fm.membername & fm.memberOf.father->includes(fm) &

not(fm.traces$FamilyMember2Male$fm@pre->exists(tr$1 | true)) =>

Male->existsLC(m | m.name = fm.memberOf.familyname + ", " + n &

FamilyMember2Male$trace->exists(tr$0 | tr$0.fm = fm & tr$0.m = m))

::

fm : FamilyMember & n = fm.membername & fm.memberOf.sons->includes(fm) &

not(fm.traces$FamilyMember2Male$fm@pre->exists(tr$1 | true)) =>

Male->existsLC(m | m.name = fm.memberOf.familyname + ", " + n &

FamilyMember2Male$trace->exists(tr$0 | tr$0.fm = fm & tr$0.m = m))

Executing this version with the second input model above produces the
output:

familyx_0 : Family

familyx_0.familyname = "Smith"

familymemberx_0 : FamilyMember

familymemberx_0.membername = "John"

familymemberx_1 : FamilyMember

familymemberx_1.membername = "John"

malex_0 : Male

malex_0.name = "Smith, John"

familymember2male$tracex_0 : FamilyMember2Male$trace

familymember2male$tracex_1 : FamilyMember2Male$trace

familymemberx_0 : familyx_0.father

familymemberx_1 : familyx_0.sons

familymemberx_0.memberOf = familyx_0

familymember2male$tracex_0 : familymemberx_0.traces$FamilyMember2Male$fm

familymemberx_1.memberOf = familyx_0

familymember2male$tracex_1 : familymemberx_1.traces$FamilyMember2Male$fm

familymember2male$tracex_0 : malex_0.traces$FamilyMember2Male$m

familymember2male$tracex_1 : malex_0.traces$FamilyMember2Male$m

familymember2male$tracex_0.fm = familymemberx_0

10

familymember2male$tracex_0.m = malex_0

familymember2male$tracex_1.fm = familymemberx_1

familymember2male$tracex_1.m = malex_0

Only one target element is produced with this semantics, as with “check-before-
enforce” semantics. For this case, this is actually the incorrect semantics.

However, in the reverse direction we can write:

transformation tau(source: MM1, target: MM2)

{

top relation FamilyMember2Male

{ enforce domain source f <:= Family {}

{ f.familyname = m.name@pre->before(", ") };

enforce domain source fm : FamilyMember { }

{ fm.membername = m.name@pre->after(", ") and

(f.father->includes(fm) xor

f.sons->includes(fm))

};

checkonly domain target m : Male { }

{ m.name = f.familyname@pre + ", " + fm.membername@pre

};

}

}

This will place all male persons with surname F in one family with family name
F . For example, for source model

m1 : Male

m1.name = "Smith, Jack"

m2 : Male

m2.name = "Smith, Peter"

with an empty target families model, the result is a single family:

familyx_0 : Family

familyx_0.familyname = "Smith"

familymemberx_0 : FamilyMember

familymemberx_0.membername = "Jack"

familymemberx_1 : FamilyMember

familymemberx_1.membername = "Peter"

malex_0 : Male

malex_0.name = "Smith, Jack"

malex_1 : Male

malex_1.name = "Smith, Peter"

familymemberx_0 : familyx_0.father

familymemberx_1 : familyx_0.sons

One element is added to the father of a family if father is empty, otherwise
elements are added to sons.

11

4.2 Update-in-place transformations

Transformations can be written to operate on a single model, in which case all
domains of the transformation relations have this model. An element is updated
in-place by using it in both a source and target domain:

top relation R

{ checkonly domain m e : E { ... source domain ... };

enforce domain m e : E { ... target domain defining update of e ... };

when { ... }

where { ... }

}

A common use of this mechanism is to ‘delete elements by selective copying’.
This removes model elements that satisfy a condition Cond by writing copy rules
for elements with condition not(Cond). For example, a rule to copy all basic
expressions in an expression tree (Figure 3) which have at least one including
expression is:

top relation CopyBasicExpr

{ checkonly domain source be : BasicExpression { };

enforce domain target be : BasicExpression { };

when

{ be.outgoing->size() > 0 }

}

If this is the only rule for basic expressions then it has the effect of deleting
basic expressions that have outgoing→size() = 0: no such expressions will occur
in a CopyBasicExpr trace at the end of the Con phase, and thus they will be
deleted by the Cleanup phase.

Figure 3: Trees and dags metamodels

The UML-RSDS translation of the above rule is:

12

**** UML-RSDS of QVT-R is:

Use Case, name: tau$Pres

Postcondition 0 is:

CopyBasicExpr$trace@pre::

not(be@pre : BasicExpression@pre & be.outgoing@pre->size() > 0) =>

self->isDeleted()

Use Case, name: tau$Con

Postcondition 0 is:

::

be : BasicExpression & be.outgoing->size() > 0 &

not(be.traces$CopyBasicExpr$be@pre->exists(tr$1 | true)) =>

CopyBasicExpr$trace->exists(tr$0 | tr$0.be = be)

Use Case, name: tau$Cleanup

Postcondition 0 is:

BasicExpression::

traces$CopyBasicExpr$be@pre->isEmpty() =>

self->isDeleted()

Update-in-place rules can also copy and modify elements, or even create
new elements. For example, to split one basic expression with two or more
including expressions, into multiple basic expressions with a single includer, we
could write:

top relation SplitBasicExpr

{ checkonly domain source be : BasicExpression

{ value = val, name = nme, outgoing = nx : Edge {} } { be.outgoing->size() > 1 };

enforce domain target be1 : BasicExpression { value = val, name = nme };

enforce domain target be : BasicExpression { };

where

{ be1.incoming->includes(nx) & be.outgoing->excludes(nx) }

}

top relation CopyBasicExpr

{ checkonly domain source be : BasicExpression { };

enforce domain target be : BasicExpression { };

when

{ be.outgoing@pre.size <= 1 }

}

The first rule creates a copy be1 of be, and retains be, for be : BasicExpression
with more than 1 including expression. The second rule copies other basic
expressions.

13

References

[1] A. Anjorin et al., Benchmarx reloaded: a practical benchmark framework
for bidirectional transformations, BX 2017.

[2] K. Lano, S. Kolahdouz-Rahimi, M. Sharbaf, H. Alfraihi, Technical debt in
Model Transformation specifications, ICMT 2018.

[3] OMG, MOF2 Query/View/Transformation v1.3, 2016.

14

